Coulomb drag

Joël Peguiron

Institute of Physics, University of Basel
Introduction

Coulomb drag: induction of a drag current by momentum transfer between spatially isolated closely spaced electron systems

Measured quantity: drag resistance

\[R_D = \frac{V_D}{I} \]

as a function of:
- temperature
- gate voltages (wire width)
- magnetic field
- ...

→ learn about electron-electron interaction in low-dimensional systems

2D: 2DEG

1D: wires in 2DEG
Some literature

- **2D systems, review article**

 Electron-drag in coupled electron systems,

- **1D systems**

 - **experiments**

 Experimental studies of Coulomb drag between ballistic quantum wires,

 Negative Coulomb Drag in a One-Dimensional Wire,
 M. Yamamoto *et. al.* (Tarucha group Tokyo), Science **313**, 204 (2006)

 - **theory**

 Coulomb Drag of Luttinger Liquids and Quantum Hall Edges,

 Current Drag in Capacitively Coupled Luttinger Constrictions,

 Coulomb Drag between One-Dimensional Conductors,

 Coulomb drag between quantum wires,

 - **review**

 Coulomb drag between ballistic one-dimensional electron systems,
Overview of Coulomb drag in 2D systems

• Prediction: M.B. Pogrebinskii, Sov. Phys.-Semicond. 11, 372 (1977)
 semiconductor-insulator-semiconductor layer structure, drive current I in layer 1
 → drag of carriers in layer 2 due to direct Coulomb interaction
 → charge imbalance across layer 2
 → drag voltage V_D induced in layer 2
 stationary state: electric field balances the frictional force of the interlayer scattering

• Expectation for single-particle Coulomb scattering

 \[R_D \propto T^2 \]
 at low temperature, perturbation treatment of interaction scattering between states within $k_B T$ of the Fermi surface for each layer (exclusion principle)

• Additional contributions (deviations)
 - phonon exchange → enhancement for $T < 0.1 \ T_F$
 - plasmons → enhancement for $T > 0.2 \ T_F$
 - disorder → $\propto T^2 \ln T$
 - magnetic field
Phonons and plasmons

![Graph showing scattering rate and temperature relationship](image)

Figure 2. The scattering rate due to the Coulomb scattering and virtual phonons τ_D^{-1}/T^2 as a function of temperature for different separations. Note that $\rho_D \propto \tau_D^{-1}$. The solid circles are the experimental results of reference [1], and the solid curves are the theoretical results from reference [24]. Inset: the contribution to $\rho_D \propto \tau_D^{-1}$ due to exchange of virtual phonons as a function of temperature. (Reproduced from reference [24].)

phonon contribution

- $\propto T^5$ or T^7 @ low T
- $\propto T$ @ high T

maximal when $k_{F,1} = k_{F,2}$ (not shown)

![Graph showing transresistivity vs. reduced temperature](image)

Figure 3. The scaled transresistivity ρT^{-2} ($\rho \propto \rho_D$) versus the reduced temperature for different densities (the densities in the two layers are the same). The dashed (solid) curves show the RPA (Hubbard) calculations of Flensberg and Hu [35], and the circles show the experimental results of reference [37]. (Reproduced from reference [37].)

plasmons thermally available

Enhancement due to larger phase-space for scattering
Magnetic field

Figure 4. The transresistance $R_T(\rho_D)$ as a function of magnetic field B for a coupled electron gas with a separation barrier of 30 nm, shown for different temperatures (plotted with offsets for clarity). The electron density is $n = 3.2 \times 10^{11}$ cm$^{-2}$ in both layers. The longitudinal resistance is also shown. (Reproduced from reference [55].)

Twin peaks in longitudinal transresistance: predicted numerically & observed

Hall drag (transverse): predicted but never observed in the absence of interlayer tunneling

Figure 5. The measured temperature dependence of ρ_D at $\nu = 1/2$ (solid curve). The broken curves are calculations from references [9, 63] of ρ_D assuming two different values of the composite-fermion mass (dotted, $m^* = 12m_0$; dashed, $m^* = 4m_0$, where m_0 is the GaAs band mass). (Reproduced from reference [28].)

? increase with temperature is too large

? saturation at low temperature ↔ dephasing issue
Coulomb drag in 1D: The quest for Luttinger-liquid behavior

For truly one-dimensional, infinite systems in the presence of electron-electron interaction, theory predicts:

- breakdown of the Fermi-liquid description: description in terms of quasiparticles invalid

- description in terms of collective oscillations (plasmons) of the interacting electrons
 → Tomonaga-Luttinger-liquid description

Coulomb drag provides a direct way to investigate this prediction!

Questions:

- what is observed in experiments? (quasi one-dimensional, finite-length systems)

- what can theory tell for finite-length systems?
1D: Fermi-liquid based theory

- leads: ideal electronic reservoirs at thermal equilibrium
- intrawire interaction: does not result in a current variation because of the quasimomentum conservation in the electron-electron collisions
- interwire interaction: direct electron-electron collisions mediated by the Coulomb interaction

\[\epsilon_{nk}^{(1)} + \epsilon_{n'k'}^{(2)} = \epsilon_{l,k+q}^{(1)} + \epsilon_{l',k'-q}^{(2)} \]

→ solve Boltzmann equation for temperature T low compared to the Fermi energy

1D: Fermi-liquid based theory

Ohmic transport $eV << k_B T$

\rightarrow drag current

$$\frac{I_D}{I} = \frac{4e^4 m^3 L k_B T}{\pi \hbar^3 \kappa^2 N} \sum_{nn'} D_{nn'}$$

with

$$D_{nn'} = \frac{1}{(k_n^{(1)} + k_n^{(2)})^3} g_{nn'} (k_n^{(1)} + k_n^{(2)})$$

$$g_{nn'}(q) = \left| \int d^2 r_\perp \int d^2 r'_\perp |\phi_n(r_\perp)|^2 |\phi_n(r'_\perp)|^2 K_0(q |\Delta r_\perp|) \right|^2$$

\rightarrow exponential decay with wire separation

$$k_n^{(1,2)} = \sqrt{2m \left[\mu_n^{(1,2)} - \varepsilon_n^{(1,2)}(0) \right]}$$

$\mu^{(0)}$ chemical potential of wire j

$\varepsilon_{n}^{(0)}$ dispersion of wire j

Linear temperature dependence also for

$$R_D = \frac{-V_D}{I} = \frac{I_D G_D}{I}$$

Figure 3. I_D / I is plotted (for $\mu^{(1)} = \mu^{(2)} = \mu$) as a function of W_1 / W_2 where the width of wire 1 is controlled through gate voltage ($\mu = 14$ meV, $T = 1$ K, $W_2 = 42$ nm, $L = 1 \mu$m, $\kappa = 13$ and the spacing between wires is 50 nm).

Peaks when the channel velocities of the two wires are aligned

non-Ohmic transport $eV >> k_B T$ \rightarrow richer T dependence, similar features
1D: Tomonaga-Luttinger-liquid theory

- 1D, infinite interacting electron system:

\[H = \frac{v_F}{2} \int dx \left[\Pi(x)^2 + \frac{1}{g^2} (\partial_x \varphi(x))^2 \right] \]

solutions: \(\varphi(x,t) \) waves (plasmons) with velocity \(v = v_F/g \)

- two wires \((k_{F,1} = k_{F,2}) \) → \(\varphi_1, \varphi_2 \) → \(\varphi_{\pm} = \varphi_1 \pm \varphi_2 \)

- interwire backscattering of electrons \((q \approx 2k_F) \) (dominant contribution)

\[H_C = \lambda \int dx \cos \left[\sqrt{8 \pi} \varphi_-(x) \right] \]

Insight for very large coupling \(\lambda \)
- interlocked charge density waves
- drag mechanism

- finite-length wire → steplike \(g(x) \) (inhomogeneous Luttinger liquid)

B. V. Ponomarenko, PRB 52, R8666 (1995)
1D: Tomonaga-Luttinger-liquid theory

- Equal lengths

Yu. V. Nazarov and D. V. Averin, PRL 1998

FIG. 2. Induced voltage difference δV in the perturbative regime for constrictions with $k_{F1} = k_{F2}$, normalized to $V_0(g) = J^2 u\hbar E_F^{-2}(u/E_F L)^{1/2}$. The curves a, b, c, d, e correspond to $g = 0.1, 0.3, 0.5, 0.6, 1.0$, respectively.

- Different lengths

1D: Tomonaga-Luttinger-liquid theory

- Temperature dependence
 - linear drag ($V \to 0$), renormalization analysis

 \[R_D \propto \left(\frac{T}{\omega_c} \right)^{4g-3} \quad \text{(spinless)}, \quad R_D \propto \left(\frac{T}{\omega_c} \right)^{2g-1} \quad \text{(spinful)} \]

 \[T \gg M, \ T_L : \quad R_D \propto T \]

 \[T < M < T_L : \quad R_D \propto T, \ T < M < T_L : \quad R_D \propto T^2 \]

- non-linear drag, numerical simulations

\[I / I_0 \]

\[\frac{V}{V_0} \]

\[\frac{T}{T_L} \]

1D: Experiments

- Experimental challenge

 - create parallel, electrically isolated 1D wires
 with separation large enough → interwire tunneling suppressed
 but small enough → drag voltage of reasonable magnitude

 - drag voltage: small magnitude, must be distinguished from spurious signals

- Realizations

 n-AlGaAs/GaAs heterostructure (2DEG) with Schottky gates

1D: Ballistic transport and interwire tunneling

- Ballistic transport

no peaks in pinch-off / dips in first plateau
→ ballistic transport

faded plateaus, sharper with magnetic field
→ non-adiabaticity @ constriction opening
and scattering @ wire edges

- Suppression of interwire tunneling

Figure 2. The conductance staircase of the top wire as a function of the bias voltage V_g applied to the gates T and M with gate B grounded at 60 mK and in different magnetic fields: 0 (1), 0.35 (2), and 0.86 T (3). Similar results were obtained for the bottom wire except for a small difference in the pinch-off voltage.

Figure 3. Intermesh tunneling current I_{MN} as a function of the middle gate voltage V_M at 60 mK and in zero magnetic field. I is the drive current in the top wire. $V_M = -1.5$ V, $V_T = -1.2$ V, and $V_{D,M} = 300 \mu$V. Note that the above values of V_B and V_T are approximately those at which a maximum drag effect is observed in later measurements with $V_M = -0.74$ V.

1D: drag voltage and interwire separation

- Drag voltage shows strongly peaked structure

![Graph showing drag voltage and current relationship](image)

- Exponential dependence on interwire separation

![Graph showing exponential relationship](image)

> vary drive wire (top) gate voltage → change drive current

- Drag voltage peaks aligned with drive current risings

![Graph showing peak alignment](image)

> All compatible with both Fermi liquid and Tomonaga-Luttinger liquid theories

Figure 4. Drag voltage V_D and drive current I as functions of the top gate voltage V_T at 70 mK and in zero magnetic field with a drive voltage of 300 μV. $V_M = -0.74$ V, $V_B = -1.525$ V. For these values of V_M and V_B, the Fermi level E_F is located just above the bottom of the lowest 1D subband of the drag wire.

Figure 8. The dependence of the drag response on the interwire separation. (a) The maximum V_D^{MAX} of the first drag peak of figure 6, in a magnetic field, as a function of the middle gate voltage V_M at 60 mK. (b) The natural logarithm of the corresponding drag resistance R_D as a function of V_M. The dotted line is a linear fit to the data points.

1D: temperature dependence

- Non-linear, power-law temperature dependence

Figure 9. The dependence of the drag response on the temperature. (a) The drag voltage V_D as a function of the top gate voltage V_T in zero magnetic field with 300 μV drive voltage at temperatures 70, 180, 300, 450, and 900 mK, corresponding to the curves in the order of decreasing peak height.

Non-linearity cannot be attributed to a temperature dependence of the conductance $R_D = \frac{I_D G_D}{I}$.

- Fermi liquid: $R_D \propto T$
- Luttinger liquid: $R_D \propto T^{2g-1}$

Figure 10. The temperature dependence of the drag resistance R_D corresponding to V_D^{MAX} for the first drag peak of figure 9 in zero field (a) and in a magnetic field of 0.86 T (b). Note that the data points at the low end of the temperature range fall below the power-law curve indicating a suppression of the drag effect at these temperatures.

1D: temperature dependence

- Non-linear, power-law temperature dependence

Figure 9. The dependence of the drag response on the temperature. (a) The drag voltage V_D as a function of the top gate voltage V_T in zero magnetic field with 300 μV drive voltage at temperatures 70, 180, 300, 450, and 900 mK, corresponding to the curves in the order of decreasing peak height.
1D: Negative Coulomb drag and wire asymmetry

- Negative Coulomb drag **@ low electron density, low temperature, high magnetic field**

Fig. 2. (A) R_d versus $V_{g_{\text{drive}}}$ of a CWO sample with $L_c = 4 \, \mu m$ measured for $V_{g_{\text{center}}} = -0.9 \, V$, $V_{g_{\text{drive}}} = -0.9 \, V$, and $I = 1 \, nA$ at $T = 10 \, mK$. The black, red, green, blue, and light blue lines are the data for B values of 0.9, 1.1, 1.3, 1.5, and 1.7 T, respectively. Negative drag was observed for $V_{g_{\text{drive}}} < -1.0 \, V$ in a magnetic field of 1.3 T and for $V_{g_{\text{drive}}} < -0.8 \, V$ in 1.7 T. (B) Drag resistance versus $V_{g_{\text{drive}}}$ measured at a magnetic field of 7 T for $V_{g_{\text{center}}} = -0.9 \, V$, $V_{g_{\text{drive}}} = -0.8 \, V$, and $I = 1 \, nA$. Conductance of the drive wire was well below the first spin-resolved plateau but not very close to the pinch-off. The negative drag became small as the temperature was raised from 200 mK (black) to 400 mK (red), 600 mK (green), and 800 mK (blue).

- Wire asymmetry

Fig. 3. R_d versus $V_{g_{\text{drag}}}$ of a CWO sample with $L_c = 2 \, \mu m$ and $L_l = 4 \, \mu m$ measured at 10 T for $V_{g_{\text{center}}} = -0.95 \, V$ and $I = 1 \, nA$ at $T = 50 \, mK$. (A) The longer wire was used as a drive wire. Negative drag was observed for $V_{g_{\text{drive}}} < -0.60 \, V$. (B) The shorter wire was used as a drive wire. No signature of negative drag was observed in the whole $V_{g_{\text{drag}}}$ range.

M. Yamamoto et al., Science 313, 204 (2006)
Conclusions and Outlook

• 2D systems
 - well understood within Fermi liquid theory
 - open questions remain in the quantum Hall regime (in 1999...)

• 1D systems
 - experimental temperature dependence seems incompatible with Fermi-liquid theory
 - further analysis needed for the Tomonaga-Luttinger-liquid theory → in preparation!
 - negative Coulomb drag and wire asymmetry: not explained!
 - negative Coulomb drag in coupled wire and quantum dot system → M. Shimizu, ..., S. Tarucha, Physica E 26, 460 (2005)